

BOUNDEDNESS OF THE FRACTIONAL MAXIMAL OPERATOR IN LOCAL MORREY-TYPE SPACES

<u>Spaces L_p(), 0

Let $0 , be a measurable set in <math>\mathbb{R}^n$, and a function f: C. The function $f = L_p($) if f is measurable on and

$$||f||_{L_p(\Omega)} \coloneqq \left(\int_{\Omega} |f|^p dx \right)^{\frac{1}{p}} < \infty$$

Note that if meas >0, then the conditions $f \ L_p(\)$ and $\|f\|_{Lp(\)}<$ are not equivalent. If, for example, f:= 1 on a non-measurable subset G of the set B_r where r>0is such that meas(B_r)>0, f:=-1 on(B_r)\G, and f:= 0 on $\ B_r$, then f is not measurable on $\$, hence does not belong to $L_p(\)$ for any0<p< , but $\|f\|_{Lp(\)}<$.

About Weak Lp-Spaces

One of the real attraction of Weak L_p space is that the subject is sufficiently concrete and yet the spaces have fine structure of importance for applications. Weak L_p spaces are function spaces which are closely related to L_p spaces. The Book by Colin Benett and Robert Sharpley contains a good presentation of Weak L_p but from the point of view of rearrangement function. In the present paper we study the Weak L_p space from the point of view of distribution function.

Next we define this kind of spaces.

For f a measurable function on X, the distribution function of f is the function D_f defined on [0,) as follows:

 $D_{f}(\lambda) \coloneqq \mu(\{x \in X : |f(x)| > \lambda\}).$

The distribution function D_f provides information about the size of f but not about the

behavior of f itself near any given point. For instance, a function on \mathbb{R}^n and each of it's translates have the same distribution function. It follows from definition before that D_f is a decreasing function of (not necessarily strictly).

Let (X, μ) be a measurable space and f and g be a measurable functions on (X, μ) then Df enjoy the following properties: For all 1, 2 > 0:

1. $|g| \le |f| \mu$ -a.e. implies that $D_g \le D_f$;

2.
$$D_{cf}(\lambda_1) = D_f\left(\frac{\lambda_1}{|c|}\right)$$
 for all $c \in \mathbb{C}/\{0\}$
3. $D_{f+g}(\lambda_1 + \lambda_2) \le D_f(\lambda_1) + D_g(\lambda_2)$
4. $D_{fg}(\lambda_1\lambda_2) \le D_f(\lambda_1) + D_g(\lambda_2)$

Next, let (X, μ) be a measurable space, for 0 , we consider $Weak <math>L_p := \left\{ f: \mu(\{x \in X: |f(x)| > \lambda\}) \le \left(\frac{c}{\lambda}\right)^F \right\}$, for some C > 0. Let $f \in L_1^{\text{loc}}(\mathbb{R}^n)$. The fractional maximal operator M_α is defined by $M_\alpha f(x) = \sup_{t>0} |B(x,t)|^{-1+\frac{\alpha}{n}} \int_{B(x,t)} |f(y)| dy, \quad 0 \le \alpha \le n$

where |B(x, t)| is the Lebesgue measure of the ball B(x,t). If = 0, then M M₀ is the Hardy-Littlewood maximal operator.

The operator M plays an important role in real and harmonic analysis.

In the theory of partial differential equations, together with weighted $L_{p,W}$ spaces, Morrey spaces M_p , play an important role. They were introduced by C. Morrey in 1938 and defined as follows: for 1 p , 0 n, a function f M if f $L_n^{loc}(\mathbb{R}^n)$ and

$$||f||_{\mathcal{M}_{p,\lambda}} \equiv ||f||_{\mathcal{M}_{p,\lambda}(\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n, r > 0} r^{-\lambda/p} \left||f|\right|_{L_p(B(x,r))} < \infty$$

Also by WM_p, we denote the weak Morrey space of all functions f $WL_p^{loc}(\mathbb{R}^n)$ for which

$$\|f\|_{WMp,} \quad \|f\|_{WMp, (R^n)} = SUP \ r^{-p} \|f\|_{WLp(B(x,r))} < x \ R^n, r > 0$$

Where $WL_p(B(x,r))$ denotes the Weak Lp-space of measurable functions f for which

$$\begin{split} ||f||_{WL_{p}(B(x,r))} &\equiv \left| \left| f\chi_{B(x,r)} \right| \right|_{WL_{p}(\mathbb{R}^{n})} \\ &= \sup_{t>0} t |\{y \in B(x,r) \colon |f(y)| > t\}|^{1/p} \\ &= \sup_{t>0} t^{1/p} \left(f\chi_{B(x,r)} \right)^{*}(y) < \infty. \end{split}$$

Here g denotes the non-increasing rearrangement of the function g.

Spanne and Adams studied boundedness of the fra tional maximal operator M for 0 < < n in Morrey spaces M_{p_1} . Later on Chiarenza and Frasca studied boundedness of the maximal operator M in these spaces. Their results, together with the classical results for L_p-spaces, can be summarized as follows.

Theorem 1.

(1) Let $1 < p_1 < p_2$ and 0 < < n. Then M is bounded from M_{p_1} , to M_{p_2} , if and only if

$$\alpha \le n \left(\frac{1}{p_1} - \frac{1}{p_2}\right) \text{ and } \lambda = \left(n \left(\frac{1}{p_1} - \frac{1}{p_2}\right) - \alpha\right) \left(\frac{1}{p_1} - \frac{1}{p_2}\right)^{-1}.$$
(2) Let $1 < p_2$ and $0 < < n$. Then M is bounded from M₁, to WM_{p2},

if and only if $\alpha \leq n\left(1-\frac{1}{p_2}\right)$ and $\lambda = \left(n\left(1-\frac{1}{p_2}\right)-\alpha\right)\left(1-\frac{1}{p_2}\right)^{-1}$.

(3) Let 1 < p . Then M is bounded from $M_{p,}$ to $M_{p,}$ for all 0

n.

(4) The operator M is bounded from M_1 , to WM_1 , for all 0 n.

If in the place of the power function $r^{-/p}$ in the definition of M_p , we consider any positive measurable weight function w defined on (0,), then it becomes the Morrey-type space $M_{p,W}$. T. Mizuhara, E. Nakai and V.S. Guliyev generalized Theorem 1.1 and obtained sufficient conditions on weights w1 and w2 ensuring boundedness of the maximal operator M and the fractional maximal operator M for the limiting case from

 $M_{p1,w1}$ to $M_{p2,w2}$.