». – 2015. – . , .1. – . 73-77 -11: 9 16%, - 40-45%, - 4,5%, - 0,121, - 10%, - 2,9%, - 0,349. 1), (₂),), [1]. , 1980). [2, 3, 4, 5]. [6, 7, 8] 1%,

-11:

- ,

,

, 2013-2014 .

0,17%, 0,15%. : -21,7 15,1 / 0-20

, N-NO₃-11,0 7,0 / 0-40 , -70,4 67,0 /100 0-20

,

2013 . - - - - 150-160

- 130-100

- 60 .

,

2014 ,

. / 232 ,76 , 51 .

,

, 1.

1 - ,

1 -% 2013-2014

		2013 .									2014 .								
-																			
	N	P	K	N	P	K	N	P	K	N	P	K	N	P	K	N	P	K	
	N, P ₂ O ₅ , K ₂ O , %																		
0	1,76	0,77	0,38	1,69	0,78	0,40	1,72	0,86	0,40	2,47	0,69	0,38	2,25	0,71	0,40	2,57	0,71	0,38	
P ₆₀	1,84	0,95	0,40	1,80	0,81	0,42	1,85	0,91	0,44	2,52	0,74	0,40	2,31	0,77	0,40	2,59	0,89	0,40	
P ₉₀	1,92	0,99	0,42	1,85	0,84	0,42	1,94	0,95	0,42	2,56	0,77	0,42	2,33	0,79	0,43	2,60	0,92	0,42	
P ₁₂	1,85	1,04	0,42	1,85	0,95	0,43	1,92	0,99	0,40	2,61	0,80	0,44	2,41	0,82	0,44	2,63	0,94	0,44	
0																			
P ₁₅	1,85	1,07	0,38	1,87	0,99	0,42	1,87	1,03	0,40	2,65	0,83	0,45	2,43	0,86	0,45	2,63	0,95	0,43	
0																			
P ₉₀	1,87	0,92	0,40	1,98	0,94	0,42	2,05	0,89	0,40	2,61	0,81	0,42	2,47	0,84	0,40	2,63	0,85	0,40	
N_3																			

0																		
P ₉₀	1,93	0,95	0,40	2,01	1,00	0,40	2,11	0,96	0,42	2,63	0,79	0,43	2,55	0,82	0,44	2,69	0,87	0,40
N_6																		
0																		
P ₉₀	1,94	1,01	0,40	2,07	1,02	0,42	2,15	1,00	0,40	2,70	0,78	0,44	2,69	0,81	0,45	2,81	0,90	0,42
N_9																		
0																		
$\overline{N_3}$	1,83	0,86	0,38	1,74	0,79	0,40	1,83	0,89	0,40	2,63	0,72	0,45	2,60	0,71	0,44	2,67	0,69	0,40
0																		
	1,87	0,95	0,39	1,87	0,89	0,41	1,93	0,94	0,40	2,61	0,78	0,43	2,45	0,80	0,43	2,65	0,87	0,41
					1				0 _{5,} K ₂ C		1	, %		1		1		
0	0,47	0,13	2,26	0,47	0,13	2,26	0,47	0,13	2,25	0,73	0,15	2,60	0,57	0,15	2,20	0,71	0,15	2,48
P ₆₀	0,47	0,13	2,26	0,46	0,13	2,26	0,46	0,13	2,26	0,77	0,16	2,64	0,66	0,16	2,22	0,75	0,16	2,50
P ₉₀	0,47	0,13	2,25	0,46	0,13	2,25	0,47	0,13	2,26	0,82	0,17	2,64	0,74	0,17	2,30	0,79	0,17	2,54
P ₁₂	0,47	0,13	2,26	0,47	0,13	2,26	0,47	0,13	2,26	0,86	0,17	2,68	0,81	0,19	2,36	0,84	0,19	2,58
0																		
P ₁₅	0,47	0,13	2,26	0,47	0,13	2,26	0,47	0,13	2,26	0,79	0,18	2,72	0,79	0,20	2,44	0,80	0,21	2,64
0																		
P ₉₀	0,47	0,13	2,26	0,47	0,13	2,26	0,47	0,13	2,26	0,83	0,16	2,68	0,77	0,17	2,40	0,81	0,17	2,50
N_3																		
0																		
P ₉₀	0,47	0,13	2,26	0,47	0,13	2,26	0,47	0,13	2,26	0,88	0,17	2,72	0,80	0,19	2,44	0,84	0,19	2,54
N_6																		
0																		
P ₉₀	0,47	0,13	2,26	0,46	0,13	2,26	0,47	0,13	2,26	0,92	0,18	2,74	0,83	0,22	2,44	0,87	0,18	2,54
N ₉																		
0																		
N_3	0,46	0,13	2,26	0,46	0,13	2,26	0,46	0,13	2,25	0,77	0,14	2,64	0,61	0,15	2,26	0,85	0,15	2,50
0																		
	0,47	0,13	2,26	0,46	0,13	2,26	0,47	0,13	2,26	0,81	0,17	2,67	0,73	0,18	2,35	0,80	0,18	2,55
	L							·				1						

2013

90•

0,3%, - 0,17%, 0,2%.
- 0,2%
- 0,2%
- 0,2%
- 0,2%
- 0,2%
- 0,2%

, 2013 . , (, 4-6 ,).

,

2 –

				,	2013	•			2014 .										
-		1	1		I	l		1	1		1	1		l	l		1		
	N	P	K	N	Р	K	N	P	K	N	P	K	N	P	K	N	P	K	
					I	1	I	/				1	1						
0	44	22	10	5 7	26	14	44	22	10	33	9	5	41	13	7	38	10	6	
P ₆₀	57	28	13	6 9	31	16	57	23	13	44	13	7	49	16	9	46	16	7	
P ₉₀	66	32	14	7 3	33	16	66	32	14	54	16	9	56	19	10	55	19	9	
P ₁₂₀	52	27	11	7 0	36	16	52	27	11	62	19	10	63	21	11	63	22	1	
P ₁₅₀	55	30	12	6 9	36	15	55	30	12	57	18	10	70	25	13	74	27	12	
P ₉₀ N ₃₀	61	27	12	7 6	36	16	61	27	12,	58	18	9	66	23	11	55	18	8	
P ₉₀ N ₆₀	68	31	14	7 8	39	16	68	31	14	56	17	9	75	24	13	63	20	9	
P ₉₀ N ₉₀	67	31	13	7 5	37	15	67	31	13	48	14	8	76	23	13	65	21	10	
N ₃₀	49	24	11	5 9	27	14	49	24	11	42	11	7	69	19	12	23	11	3	
	58	28	12	69	33	15	58	27	12	50	15	8	63	20	11	53	18	8	
0	15	4	71	16	4	77	12	3	57	12	2	42	13	4	51	15	3	51	
P ₆₀	16	5	77	18	5	87	14	4	69	18	4	60	17	4	57	16	3	54	
P ₉₀	15	4	72	18	5	90	16	4	77	21	4	66	20	5	61	20	4	64	
P ₁₂₀	15	4	73	18	5	86	13	4	61	22	4	70	23	5	68	22	5	68	
P ₁₅₀	15	4	75	17	5	83	14	4	66	20	5	70	27	7	85	25	7	82	
P ₉₀ N ₃₀	15	4	72	18	5	87	14	4	68	22	4	71	25	6	78	20	4	63	
P ₉₀ N ₆₀	16	4	76	18	5	88	15	4	73	22	4	69	28	6	85	28	6	84	
P ₉₀ N ₉₀	16	4	76	17	5	82	15	4	71	18	4	53	26	7	76	22	5	65	
N ₃₀	14	4	69	16	5	77	13	4	61	18	3	63	21	5	78	18	3	54	
	15	4	73	17	5	84	14	4	67	19	4	63	22	5	71	21	4	65	

```
2013 . 39
                                <sub>90</sub>, 2014 . 29 / ;
                               34 24 / .
                   34 24 ;
                       1
                             2013
                                   2,3
                                         , 1,0
                                                         , 2,6
                       , 1,0
                                    , 3,4
       2014 . - 3,4
                 2013 .
           69
                       63 2014 ., 58 50
                                                    2013 2014 .,
      58 53
            28, 33, 27 ; 2014 – 15, 20, 18 .
2013 .
                                  , ,
                         2013
                               7
                                                        2014 . 4
                        4-7
                         12-15 /
                                   2013 8-11
                                             2014 .
                       - 6-7
                                    , 2014 . - 63, 71 65 .
2013 . 73, 84 67
                         4,
                                    7
         30-80%,
                                . . . . – .: , 1972. – 269 .
   1.
                                       //
                                                , 1975. – 1. – .
70-75.
   3. Hamman H.Z. Schwerpunkt des Qualität-orientierten Produktionsverfahrens.
Hafer // Feldwirtschaft. – 1989. – S. 30-36.
   4.
                               . .,
                      , 1988 – 6. – . 50-56.
   5.
                  //
                                                        . – 1976. –
  1. – . 113-118.
```

- 7. Yahid Sarvi, Mohammad Feizain, Azade Mikhak, Arezo Mahadavi Effect of organic fertilizors on different forms of phosphorous and corn yield in Moghan region // Abstract book 9th international Soil Science Congresson "The Soil of Civilization", Turkey, 2014-p.193.

8. , , ,

//

, 1990. - 4. - . 3-7.