«Сейфуллин окулары – 12: Ғылым жолындағы жастар-болашақтың инновациялық әлеуеті» атты Республикалық ғылыми-теориялық конференция материалдары = Материалы Республиканской научно-теоретической конференции «Сейфуллинские чтения-12: Молодежь в науке - инновационный потенциал будущего" . – 2016. – Т.1, ч.3 – С.66-70

ОЦЕНКА СОСТОЯНИЯ СТЕПНЫХ СОСНЯКОВ КАЗАХСТАНА ПО ТАКСАЦИОННЫМ ХАРАКТЕРИСТИКАМ КРОН ДЕРЕВЬЕВ

Данчева А.В., Залесов С.В.

Изучение устойчивости и прогноз динамики лесных насаждений является перспективным для определения региональных экологических изменений, надежности функционирования защитных лесов, а также для определения возможности сохранения необходимого уровня биологического разнообразия лесных экосистем [1, 2].

Биологическая продуктивность насаждений напрямую связана с состоянием древесного полога. Поэтому изучение строения и состояния крон деревьев в древостое имеет важное практическое значение в оптимизации строения фитоценозов по густоте и максимального повышения динамики их роста и продуктивности, а, следовательно, устойчивости лесной экосистемы к внешним факторам воздействия.

Исследования проводились в сосновых насаждениях, произрастающих на территории 3 областей: Акмолинской (на примере ГНПП «Бурабай»), Павлодарской (Баянаульский ГНПП) и Восточно-Казахстанской (ГЛПР «Семей орманы»). По данным учета лесного фонда на 01.01.2015 г. на долю произрастающих, на территории этих областей, сосновых насаждений приходится 83,5% всех сосняков Казахстана. В соответствии с лесорастительным районированием сосновых лесов Казахстана [3], сосняки ГНПП «Бурабай» и Баянаульского ГНПП относятся к нагорным островным сосновым лесам Центрально-Казахстанского мелкосопочника, сосновые насаждения ГЛПР «Семей орманы» – к ленточным равнинным сосновым лесам Прииртышья.

Объектами исследований являлись чистые по составу сосновые древостои естественного и искусственного происхождения, произрастающие в очень сухих леса (C_1) , сухих (C_2) и свежих (C_3) типах леса. Анализ состояния древостоев проведен по данным 18 пробных площадей.

Закладка ПП и определение лесотаксационных параметров исследуемых сосновых древостоев проведены согласно существующих методических приемов [4]. Определение жизненного состояния древостоя в целом и каждого дерева в отдельности проводилось по методике В.А. Алексеева [5]. Площадь проекции кроны рассчитывалась по формуле площади круга. Объем кроны деревьев сосны вычислялся по формуле объема параболоида. Данные обработаны статистически с помощью компьютерной программы Excel.

В ГНПП «Бурабай» сосновые древостои относятся к VI классу возраста. Класс бонитета — IV-V. Исследуемые сосняки — высокополнотные со средним значением полноты 1,0. Полнота древостоя на ППП-4к — 0,77.

В Баянаульском ГНПП, на момент закладки опытов, возраст естественных древостоев составил 69 лет (IV класс возраста). Класс бонитета – V. Искусственные сосняки на ПП-2Б и 3Б относятся к II классу возраста, на ПП-1Б древостои характеризуются IV классом возраста. Класс бонитета искусственных древостоев – III-IV. Исследуемые насаждения относятся к высокополнотным со средним значение полноты 1,2. ПП-1Б заложена в среднеполнотном древостое, значение полноты -0,6.

В ГЛПР «Семей орманы» древостои относятся к III классу возраста. Класс бонитета естественных древостоев – IV, искусственных – III. Значение полноты 1,1-1,3.

В результате проведенных исследований (табл. 1, 2, 3) значение жизненного состояния исследуемых сосновых древостоев варьирует в пределах 58,0-76,0%, что дает основание оценивать их как «ослабленные» или биологически неустойчивые.

Полученные данные основных показателей крон деревьев исследуемых сосновых древостоях (табл. 1 и 2) свидетельствуют, что наибольшими значениями диаметра $(D_{\kappa p})$, площади $(S_{\kappa p})$ и объема $(V_{\kappa p})$ кроны характеризуются среднеполнотные древостои на ПП-1Б (Баянаульский и на ППП-4к (ГНПП «Бурабай»). Достоверность среднеполнотными рассматриваемых показателей между высокополнотными древостоями статистически доказана ($t_{\text{факт}}=2,1-7,1$ при $t_{0.05} = 1,96-2,00$).

Таблица 1 – Среднестатистические данные таксационных показателей крон деревьев в сосняках ГНПП «Бурабай»

№ ППП	Показатель жизненного состояния, %	Диаметр кроны (D_{kp}) , см	Площадь кроны ($S_{\kappa p}$), M^2	Объем кроны $(V_{\kappa p}), M^3$
2	58,4±2,4	328,5±9,5	9,1±0,5	36,9±2,7
1	76,1±1,2	334,1±8,2	$9,4\pm0,5$	44,0±2,6
3к	69,4±1,6	328,6±7,9	9,0±0,4	36,6±2,1
5	63,9±1,8	325,8±11,8	9,3±0,6	43,8±3,8
4к	71,9±1,6	363,6±12,1	$10,8\pm0,7$	52,3±4,3

Таблица 2 – Среднестатистические данные таксационных показателей крон деревьев в сосняках Баянаульского ГНПП

№ ПП	Показатель	Диаметр	Площадь	Объем	
	отоннениж	кроны $(D_{\kappa p})$,	кроны $(S_{\kappa p})$,	кроны	
	состояния, %	СМ	M^2	$(V_{\kappa p}), M^3$	
Естественные древостои					
4Б	69,3±2,2	157,4±8,1	2,1±0,2	3,3±0,4	

5Б	66,5±2,8	155,9±10,2	2,1±0,3	4,6±1,0	
Искусственные древостои					
1Б	75,7±3,1	274,4±14,3	6,4±0,6	21,0±3,3	
2Б	70,0±3,0	167,3±11,4	2,5±0,4	4,0±1,0	
3Б	73,3±2,9	186,3±10,6	3,0±0,3	4,2±0,8	

По полученным данным основных показателей крон деревьев в средневозрастных сосновых древостоях ГЛПР «Семей орманы», приведенным в табл. 3, наибольшими значениями протяженности (L_{кр}), диаметра $(D_{\kappa p})$, площади $(S_{\kappa p})$ и объема $(V_{\kappa p})$ кроны характеризуются искусственные древостои. Данные показатели в искусственных сосняках в 1,2-2,0 раза превосходят аналогичные В естественных древостоях. Полученные различия статистически достоверны ($t_{\text{факт}}$ =3,09-5,06 при $t_{0.05}$ = 1,96).

Таблица 3 – Среднестатистические показатели крон деревьев в сосновых древостоях ГЛПР «Семей орманы»

№ПП	Показатель жизненного состояния, %	Диаметр кроны, см	Площадь кроны, м ²	Объем кроны, м ³	
Естественные древостои					
2	69,7±1,9	158,6±7,5	2,2±0,2	4,4±0,7	
4	67,8±2,1	175,6±8,4	2,7±0,3	5,9±0,7	
1	70,9±1,3	179,1±7,2	2,9±0,2	5,8±0,7	
3	$67,4\pm2,0$	$177,4\pm10,7$	$2,9\pm0,3$	$7,2\pm1,1$	
Искусственные древостои					
9	60,1±3,6	200,1±11,8	3,6±0,6	9,6±2,7	
10	64,0±2,6	191,2±12,1	3,2±0,4	11,0±2,1	
8	62,9±3,3	225,8±19,5	4,8±0,7	14,6±2,6	

Распределение диаметра ($D_{\kappa p}$), площади ($S_{\kappa p}$) и объема ($V_{\kappa p}$) кроны деревьев сосны на исследуемых ПП по категориям жизненного состояния свидетельствует, что на всех ПП отмечается зависимость рассматриваемых показателей от категорий жизненного состояния деревьев. С ухудшением состояния наблюдается снижение значений рассматриваемых показателей. В результате проведенного анализа на всех ПП исследуемых сосняков установлена тесная взаимосвязь диаметра кроны деревьев ($D_{\kappa p}$) с показателем жизненного состояния, которая аппроксимируется уравнением полинома 2 степени и линейной функцией (рис. 1, 2, 3) и подтверждается достаточно высокими коэффициентами достоверности (\mathbb{R}^2).

Та же закономерность сохраняется при анализе площади $(S_{\kappa p})$ и объема $(V_{\kappa p})$ кроны деревьев в зависимости от показателя жизненного состояния. Тесная взаимосвязь рассматриваемых показателей описывается уравнением полинома и линейной функцией и подтверждается высокими коэффициентами аппроксимации.

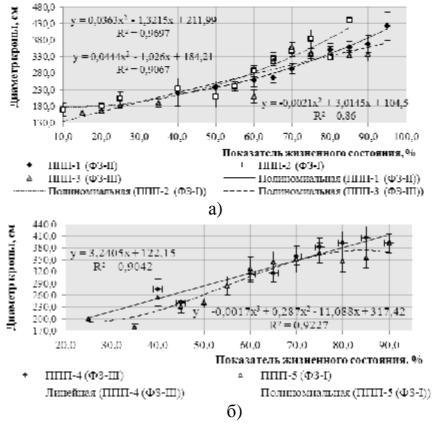


Рисунок 1 — Взаимосвязь диаметра кроны $(D_{\kappa p})$ с показателем жизненного состояния: а) в очень сухих сосняках, б) в свежих сосняках ГНПП «Бурабай»

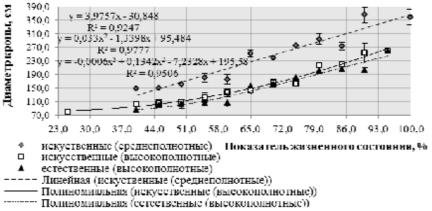


Рисунок 2 — Взаимосвязь диаметра кроны $(D_{\kappa p})$ с показателем жизненного состояния в сосняках Баянаульского ГНПП

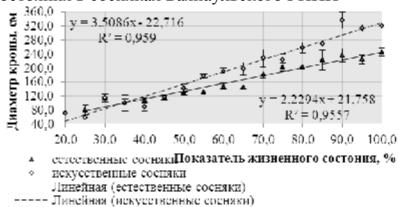


Рисунок 3 — Взаимосвязь диаметра кроны $(D_{\kappa p})$ с показателем жизненного состояния в сосновых древостоях ГЛПР «Семей орманы»

В результате проведенных исследований можно сделать следующие выводы:

- 1. По значению показателя жизненного состояния (ОЖС) исследуемые сосновые древостои относятся к категории «ослабленные» и оцениваются как биологически неустойчивые. Наибольшим значением ОЖС характеризуются среднеполнотные древостои.
- 2. На протяженность, диаметр, площадь и объем кроны деревьев в сосняках большое влияние оказывает полнота древостоев и густота произрастания. Со снижением последних отмечается увеличение рассматриваемых параметров кроны.
- 3. Статистически доказана зависимость диаметра, площади и объема кроны от категорий жизненного состояния деревьев. С улучшением жизненного состояния деревьев отмечается увеличение рассматриваемых показателей кроны.
- Взаимосвязь рассматриваемых показателей крон деревьев высокополнотных древостоях может быть описана уравнением полиноминальной функции. В среднеполнотных сосняках данная взаимосвязь носит прямолинейный характер и подтверждается высоким коэффициентом аппроксимации.
- 5. Диаметр, площадь и объем кроны деревьев в сосновых древостоях Казахстана (на примере сосняков Казахского мелкосопочника и ленточных боров Прииртышья) являются достоверными показателями их состояния и могут быть использованы в качестве одних из основных диагностических признаков биологической устойчивости сосняков.

Список литературы

- 1. Григорьева С.О. Экологические аспекты в исследованиях по управлению лесными экосистемами / Труды Санкт-Петербургского научно-исследовательского института лесного хозяйства. 2014. № 2. С. 5-14.
- 2. Miren del Río, Rafael Calama, Isabel Cañellas, Sonia Roig, Gregorio Montero. Thinning intensity and growth response in SW-European Scots pine stands // Annals of Forest Science. 2008. Volume 65. Issue 3. P. 308-308. doi: 10.1051/forest:2008009.
- 3. Грибанов Л.Н. Сосновые леса Казахстана и биологические основы хозяйства в них (Доклад по совокупности опубликованных работ, представленный на соискание ученой степени доктора биологических наук). Свердловск, 1965. 54 с.

- 4. Данчева А.В., Залесов С.В. Экологический мониторинг лесных насаждений рекреационного назначения: учебное пособие. Екатеринбург: Урал. гос. лесотехн. ун-т, 2015. 152 с.
- 5. Алексеев В.А. Диагностика повреждений деревьев и древостоев при атмосферном загрязнении и оценка их жизненного состояния / Лесные экосистемы и атмосферное загрязнение. Ленинград: Наука, 1990. С. 38-53.