С.Сейфуллин атындағы Қазақ агротехникалық университетінің 60 жылдығына арналған «Сейфуллин оқулары— 13: дәстүрлерді сақтай отырып, болашақты құру» атты Республикалық ғылыми-теориялық конференциясының материалдары = Материалы Республиканской научно-теоретической конференции «Сейфуллинские чтения — 13: сохраняя традиции, создавая будущее», посвященная 60-летию Казахского агротехнического университета имени С.Сейфуллина. - 2017. - Т.І, Ч.б. - С.169-171

ПРОДУЦИРОВАНИЕ ЛИМОННОЙ КИСЛОТЫ ШТАММАМИ ASPERGILLUS NIGER

Атабаева Бекзат, научный сотрудник, Ануарбекова Сандугаш, заведующая лаборатории микробиологии и биотехнологии, к.м.н. ТОО «Казахский научно-исследовательский институт переработки сельскохозяйственной продукции», г. Астана

Способность образовывать лимонную кислоту при росте на средах с углеводами — свойство, широко распространенное среди мицелиальных грибов [1, 2].

В настоящее время в качестве основного продуцента лимонной кислоты применяются различные штаммы *A. niger*.

Представители вида *А. niger* способны синтезировать витамины — биотин, тиамин, рибофлавин и др. [3]. В тоже время он является продуцентом лимонной кислоты [4, 5], обеспечивая 99% объёма мирового производства лимонной кислоты — это более 1,4 миллиона тонн в год.

Определение способности культур к биосинтезу лимонной кислоты из сахарозы проводилось в соответствии с методом В.С. Буткевича, 1972 г. [6].

Объектами исследования являлись девять штаммов *Aspergillus niger* из коллекции института: 52/375, 23/295, 22/269, 25/309, 51/371, 78/494, 254/1, 255/1, 18 и два штамма *A. wentii* 95, 141 выделенные из зерновых культур.

Определение способности штаммов (в 2-х повторностях) к биосинтезу лимонной кислоты из сахарозы проводилось в соответствии с подсчетом лимонной кислоты в КЖ (культуральная жидкость).

Исследования проводят на среде с большим содержанием сахарозы. Избыток в среде сахара и малое содержание в ней азота создают благоприятные условия для накопления кислоты.

При росте грибковых культур наблюдается различная интенсивность роста мицелия (рисунок 1). Цвет КЖ штаммов *A. wentii* менялся на светлоярко оранжевый, что указывает на наличие пигмента.

Рисунок 1 – Рост грибов *A. niger* и *A. wentii* на 7-е сутки культивирования

При определении кислотности КЖ лакмусовой бумагой (после отделения мицелия) происходило изменение ее цвета на красный (pH 3,0-1,5), что свидетельвовало о присутствии лимонной кислоты в опытных вариантах. В контроле pH оставался кисло-нейтральным -5,0.

Результаты титрования представлены на рисунке 2 и таблице. Цвет раствора насыщенный яркий. В 1 мл 0,1 н. раствора NaOH содержится 0,0064 г лимонной кислоты.

Рисунок 2 — Оценка количественного содержания лимонной кислоты в КЖ A. niger (a) и A. wentii (б)

Таблица – Продуцирование лимонной кислоты штаммами A. niger и A. wentii

Штамм	pН	Кол-во 0,1	К-во лимонной
	КЖ	н. NaOH	кислоты в КЖ,
		для	г/100 мл
		титров-я,	
		МЛ	
A. niger №	1,5	67,7	0,43328
52/375			
A. niger N_2	2,0	57,2	0,36608
23/295			
A. niger 22/269	1,5	52	0,3328
A. niger №	2,0	51,2	0,32768
25/309			

A. niger №	2,5	43,0	0,2752
51/371			
A. niger №	2,0	37,5	0,24
78/494			
A. niger 254/1	2,0	37	0,2368
A. niger 255/1	2,5	30	0,192
<i>A. niger</i> № 18	3,0	12,2	0,07808
A. wentii № 141	3,0	6,1	0,03904
A. wentii № 95	4,0	3,9	0,02496
Контроль	5,0	3,7	0,02368

По сравнению с штаммами *A. wentii*, штаммы *A. niger* продуцируют большее количество лимонной кислоты.

Наибольшие значения показали штаммы *А. niger*: 52/375, 23/295, 22/269, 25/309, 51/371, их значения находятся в пределах 0,327680-0,43328 г/100 мл. Наибольшее количество лимонной кислоты синтезировал штамм *А. niger* 52/375 (0,43328 г/100 мл) и наименьшее штамм *А. niger* 18 (0,07808 г/100 мл). В КЖ остальных коллекционных штаммов наблюдаются следы присутствия лимонной кислоты.

Итак, изученные нами штаммы грибов показали различную степень активности при синтезе лимонной кислоты.

Таким образом, штаммы Aspergillus niger могут быть использованы в дальнейших исследованиях для получения лимонной кислоты.

Список литературы

- 1. Синтез органических кислот: http://www.webkursovik.ru/kartgotrab.asp?id=-98282, 27.11.2012.
- 2. Alekseev K.V., Dubina M.V., Komov V.P. <u>Metabolic</u> <u>Characteristics of Citric Acid Synthesis by the Fungus Aspergillus niger</u> // Applied biochemistry microbiology. 2015. V. 51, P. 857-865.
 - 3. Род Аспергилл (Aspergillus): http://dic.academic.ru.
- 4. Сазанова К.В. Органические кислоты грибов и их экологофизиологическое значение: Дисс. к.б.н. С.-Петербург, 2014. 159 с.
- 5. Культура Aspergillus niger продуцент лимонной кислоты: http://citricacid.ru/aspergillus-niger/.
- 6. Теппер Е.З., Шильникова В.К., Переверзева Г.И. Практикум по микробиологии. М.: Колос, 1972. С. 98-99.