
«Сейфуллин оқулары – 16: Жаңа формациядағы жастар ғылыми – Қазақстанның болашағы» атты

халықаралық ғылыми-теориялық конференциясының материалдары = Материалы Международной
научно-теоретической конференции «Сейфуллинские чтения – 16: Молодежная наука новой

формации – будущее Казахстана». - 2020. - Т.І, Ч.3 - С.130-132

THE DEVELOPMENT OF THE TCP PROTOCOL IN PYTHON

Zholdangarova G.I.

The article discusses the main transport layer protocols: TCP and its

advantages. We analyze the logic of protocols and situations in practice using the

Python programming language, in which it is preferable to use one or another type

of blocking structure by the server. The TCP/IP stack also matches the OSI model

and examples in the Python programming language that use these protocols.

Data transfer brings people together, and thus provides a reliable connection

between them. One user can use various applications and services, such as Internet

resources, games, and messengers, which are used for data exchange. The data is

Packed and sent to the user we need.

The information transfer process is performed using the OSI layer. The

processes described in the OSI transport layer receive data from the application

layer and prepare it for forwarding on the network layer. the sender Computer

communicates with the recipient computer to determine how to divide data into

segments, how to prevent data loss, and how to verify the delivery of all data.

Transmission using TCP is similar to sending packets whose path is tracked

from the sender to the recipient, and they are reliable. TSR uses the following basic

operations to ensure reliability.

Tracking the number of segments sent to a particular node by an

application.Подтверждение полученных данных.

Retransmission of segments when data is lost after a certain waiting time.

To understand how the TCP Protocol works, you need to figure out how to

use the reliability tools, as well as how they track communication sessions. The

TCP Protocol also provides the following features, which will be tested in practice

in the Python programming language. Opportunities:

Establishing a communication session in TCP is a connection-establishing

Protocol. Before forwarding any traffic, the connection Protocol negotiates and

configures a persistent connection (or session) between the source device and the

destination device. A session allows devices to agree on the amount of traffic that

can be forwarded at a given time, as well as carefully monitor data transfer

between the two devices.

Reliability of delivery in network terminology, reliability means guaranteed

delivery to the destination node of all data segments sent by the source node,

without exception. For many reasons, one of the segments may be damaged or

completely lost during transmission over the network.

Delivery in the same order since multiple routes with different data rates can

be used in networks, their order may change during data delivery. Using the

https://kazatu.kz/assets/i/science/sf15_vet_109.pdf
https://kazatu.kz/assets/i/science/sf15_vet_109.pdf
https://kazatu.kz/assets/i/science/sf15_vet_109.pdf

numbering and ordering of the segments, TCP can guarantee that they will be

assembled in the correct order.

Flow control of data transmission resources of the network nodes, such as

memory or processing power is limited. When the TCP Protocol receives

information that these resources are being used too actively, it may require the

sending application to slow down the data flow rate. To do this, the TSR regulates

the amount of information transmitted by the source. The data flow control feature

prevents data from being sent again if the receiving node's resources are

overloaded.

In order to understand how the TCP Protocol works, we use the socket

module in the Python programming language. Socket-an abstract object that

represents the connection endpoint. Socket connects two endpoints, and serves as a

bridge between the server and the client. In order to establish such a connection in

Python, a program was written that initiates the case of a client-server connection.

This program can be seen in figure 2 and figure 3.import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.bind(('127.0.0.1', 8888))

sock.listen(5)

while True:

 try:

 client, addr = sock.accept()

 except KeyboardInterrupt:

 sock.close()

 break

 else:

 result = client.recv(1024)

 client.close()

 print('Message', result.decode('utf-8'))

Figure 2. The program for the server

 Figure 2 shows a detailed description of the program. The program consists

of strings and each string has its own function. In this program, we used the

conditional while operator, which is infinite.

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect(('127.0.0.1', 8888))

sock.send(b'Test message')

sock.close()

Figure 3. The program for the client

 Figure 3 shows the client program, and the first, third, and fourth lines

correspond to the description of the lead.

 After running these programs, we get the result shown in figure 4. The

shipment was successfully completed, so we were able to make sure that the TCP

is really reliable.

Figure 4. Result

 Figure 4 in the console shows the result of the message we sent. The

program passed the test, no losses were detected.

 Based on the work done in Python, TSR met all expectations. Working with

the help of a software language, we were able to thoroughly study the transport

level of the OSI model. We could also see that the vehicle works without delays

and losses. In a modern communication network, you can often encounter various

problems, such as game freezes when using the UDP Protocol. I think that

switching to TCP will solve many problems.

List of references

1. Gurikov, S.R. Fundamentals of algorithmization and programming in

Python / S.R. Gurikov. - Moscow: Forum, 2018. - 991 c.

2. 6. Gurikov, S.R. Fundamentals of algorithmization and programming in

Python. Textbook. Grif MO RF / S.R. Gurikov. - Moscow: Infra-M, Forum, 2018.

- 707 c.

3. Zlatopolsky, D.M. Fundamentals of programming in Python / D.M.

Zlatopolsky. Moscow: DMK Press, 2017. - 277 c.

4. Eric, Mathis Are Learning Python. Game programming, data visualization,

web applications / Mathis Eric. - Moscow: Peter, 2018. - 760 c

