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According to the World Health Organization, cardiovascular disease (CVD)
is the leading cause of death worldwide. The organization estimates that 17.9 million
people died from CVD in 2016, accounting for 31% of all deaths in the world, 85%
of these deaths were due to heart attack and stroke.

The main and most accessible way to diagnose CVD is ECG. The ability to
receive, automatically recognize and make decisions based on ECG data obtained
remotely provides doctors and patients with new ways to reduce these sad statistics.

Automatic recognition of ECG rhythms is already a classic task. Despite the
fact that the first studies in the field of digital processing of ECG records appeared
in the 70s of the last century, this area does not lose its relevance for health care and
continues to develop. Mainly, the changes relate to the availability of continuous
remote cardiac monitoring within telemedicine systems for ordinary patients.

In recent years, research on this topic has been focused on finding more
accurate and less demanding algorithms for the initial data. Accuracy-enhancing
automatic recognition techniques require an increasing amount of tagged data for
training and testing models. The most accessible open data is collected on the
PhysioBank project site. In addition, this resource is notable for the fact that it hosts
annual competitions to highlight the properties of physiological data. In the 2017
competition, for example, the challenge was to isolate atrial fibrillation. The close
recognition quality was given by two radically different approaches - feeding a large
number of traditional indicators into the automatic algorithm and feeding the
primary raw data to the neural network.

The classical approach to training recognition models provides for
preliminary filtering of input data from mains pickups and broadband interference
caused by electrode mobility and natural body currents of muscle origin. Often, QRS
complexes are detected in the signal, and the data is sliced according to their
position.



The option of directly feeding data to a trained neural network is certainly
simpler from the point of view of data preparation and requires significantly less
computational resources. Such networks can be based on the DCNN structure.
According to the experience of recognizing AFIB (atrial fibrillation), recordings of
10 seconds are the right compromise between recognition accuracy and the desire to
reduce the amount of simultaneously processed data.

First of all, patients 102 and 104 were excluded from the ECG records of 48
patients, who did not have the MLII lead, which was supposed to be examined. The
research uses 15 rhythms that are already present in the layout. Due to the different
number of records for different classes, the data of such classes are multiplied in
order to equalize the cardinality of the classes. Data preprocessing consists only in
subtracting the average. Normalization of the signal amplitude is not carried out,
since it is known that a drop in amplitude is the most important sign of a critical state
of a patient, for example, asystole. There is no asystole in the current data, but it is
assumed that work will continue with the expansion of the data with records from
other databases.

Data propagation for training "poor" classes 1s performed by sampling from a
long implementation with overlapping 10-second windows. When examining the
data, it can be seen that manual marking of rhythms contains a systematic error in
the first segment due to the expert's preferred beginning of the rhythm relative to the
strike phase, while a 10-second segment with real recognition can start from an
arbitrary place. The windows are overlapped in increments of 1 second, so the
intervals of the continuous rhythm are rounded down to the nearest second. This
interval is centered relative to the origin, which gives a random start offset from zero
to half a second (on average by a quarter of a second).

To cleanse data from non-systematic outliers, several types of data were
excluded from the sample:

e recordings marked as noise by experts;

e areas of normal sinus rhythm, on which rare episodes of violations such
as extrasystoles are found;

e fragments marked Q (unclassified beat), U (ECG not readable), I
(isolated QRS-like artifact).

Within the rhythm with a driver, normal beats are also allowed due to the
recording features that smooth out the leading edge of the beat: tape recording,
frequency response distortions, and others.

Next, a set of intervals is formed containing a single rhythm, the length of
which is a multiple of a second and not less than 10 seconds. Final validation data
that should not overlap with the training set is separated from the sample under
study. The amount of test data is defined as 10% of the amount of training data. To
generate the required number of samples, the data must be multiplied.



Rhythm | Files | Parts | Seconds | Pieces | PieTst | Test | Shifts | Learn
N 33 603 36731 | 3427 | 2824 10 0 3417
AFIB 8 77 7392 706 629 10 0 696
P 2 68 2516 227 159 10 0 217
SBR 1 10 1567 152 142 10 0 142
B 6 40 1443 127 87 10 0 117
T 7 36 819 72 36 7 1 164
BII | 5 698 68 63 7 3 115
AFL 3 17 538 48 31 5 | 101
PREX | 19 415 35 16 4 2 161
SVTA 3 5 141 12 7 1 5 116
VFL 1 4 132 12 8 1 8 107
IVR 2 2 130 12 10 1 9 101
AB 1 2 80 7 5 1 10 106
VT | 2 74 6 4 1 7 103
NOD 2 5 73 6 1 1 8 109
Table 1. presents the distribution of the prepared data by
grade

Rhythm: A label for this rhythm in standard annotations.

Files: The number of files in which this rhythm occurs.

Parts: Number of original intervals (at least 10 seconds long, divisible by a

second).

Seconds: The total length of Parts in seconds (in descending order).

Pieces: The number of non-overlapping 10-second intervals into which the

Parts can be sliced (sum of lengths divided entirely by 10).

PieTst: Parts lasting 20 seconds or more can give (Len // 10 - 1) Pieces for

testing. In this case, there will be no lost residues shorter than 10 seconds.

Test: The number of legs for the final test. Minimum of three numbers:




¢ 10% Pieces, rounded to the nearest whole;
e PieTst (we can cut as much as possible without small residues);
e 10% of the ordered number of items in the class.

Shifts: The number of steps required for overlapping windows per second to
get windows is slightly more than ordered for elements of this class. If = 0, then
choose from non-overlapping Pieces.

Learn: The number of resulting bins, which is further decimated until the
specified number of class elements is reached.

All work on the preparation of the training and test sample was carried out not
with the data itself, but with the records containing the counting number of the
beginning of the fragment and the duration in seconds. Based on the prepared indices
of these fragments, the data is extracted and subjected to the simplest preprocessing:
subtraction of the constant component. Additionally, each element is present in
inverted form to operate with inverse electrode stacking (record 114). Therefore, the
actual amount of data is doubled.

After training and testing the DCNN network, the following results were
obtained:

Classification report Confusion matrix
Pre- F1- | Sup-
recall rhythm | N |AFIB| P [SBR| B | T | BIl | AFL

cision SCOTE | port
091 |[1.00 |0.95 (20 N 2000 0 |0 010 (0 |O
0.87 |1.00 |0.93 [20 AFIB [0 |20 0 |0 010 (0O |0
1.00 | 1.00 |1.00 |20 P 0 |0 2010 010 (0 |O
1.00 | 1.00 |1.00 |20 SBR |0 |0 0O {20 |0 (O |O |O
0.95 |1.00 |0.98 |20 B 0 |0 0 |0 2000 (O |O
1.00 | 0.86 [0.92 |14 T 0 |2 0 |0 0 |12(0 |0
1.00 | 1.00 |1.00 |14 BII 0 |0 0 |0 0|10 (140
1.00 | 0.90 [0.95 [10 AFL [0 |1 0 |0 010 |0 |9
1.00 | 1.00 [1.00 |8 PREX (0 |0 0 |0 010 (0 |O
1.00 | 1.00 |1.00 (2 SVT |0 |0 0 |0 010 (0 |0
1.00 | 1.00 |1.00 (2 VFEL (0 [0 0 |0 010 (0 |O
1.00 | 1.00 |1.00 (2 IVR 0 |0 0 |0 010 (0O |0




0.00 ]0.00 |0.00 |2 NOD |2 |0 0 |0 0 {0 |0 |0
0.96 158 Accuracy

0.85 |0.85 |0.85 15 Macro average

0.94 1096 |0.95 158 Weighted average

0.968

Ranking-based average

Table 3. Four grades with good results

It 1s easy to see that the neural network is subject to pronounced overfitting
for classes with a small training sample: T, AFL, SVTA.

For the remaining 4 grades, it makes sense to re-do the learning and validation
process. Validation results are marginally better for 3 grades. Presumably, as a result
of cleaning the training sample from noise by small classes:

Classification report Confusion matrix
Pre- Fl- Sup-
recall rhythm N AFIB | P B P

cision score port
0.93 1.00 |0.97 154 N 154 |0 0 0 0
0.93 0.92 10.92 126 AFIB 00 116 0 0 0
1.00 1.00 |0.76 26 B 1 9 20 |16 0
1.00 1.00 | 1.00 290 P 0 0 0 0 290
0.97 596 Accuracy
0.97 0.88 |[0.81 596 Macro average
0.97 0.97 |0.96 596 Weighted average
0.983 Ranking-based average

Table 4. Validation results of the remaining four classes




From the studies carried out, it can be concluded that even 2-3 patients'
records may be sufficient for reliable recognition of heart rhythm pathologies. The
quality of such models should be checked in practice with the obligatory selection
of a group of patients for validation. It seems that the amount of data required for
each case depends on the characteristics of rhythm disturbances inherent in one or
another pathology.
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