М.А. Гендельманның 110 жылдығына арналған «Сейфуллин оқулары – 19» халықаралық ғылыми - практикалық конференциясының материалдары = Материалы международной научно-практической конференции «Сейфуллинские чтения – 19, посвященной 110-летию М.А. Гендельмана». - 2023.- Т. І, Ч. IV. – С. 103-109.

УДК 520.39

СОВЕРШЕНСТВОВАНИЕ МЕТОДИКИ ПРОИЗВОДСТВА ТОПОГРАФИЧЕСКОЙ СЪЁМКИ С ПОМОЩЬЮ ГНСС-ПРИЁМНИКОВ И ТАХЕОМЕТРОВ

Костеша В.А., заведующий кафедрой геодезии и геоинформатики, Хромов А.В., старший преподаватель, Початков А.Р., старший преподаватель ФГБОУ ВО «Государственный университет по землеустройству», г. Москва

Работа геодезистов с крупными организациями может быть осложнена необходимостью соблюдения ряда их требований по форме материала, предусмотренного к сдаче в соответствии с договором.

В статье рассматривается процесс оптимизации работы с одной из крупнейших организаций, одним из видов деятельности которой является производство инженерно-геодезических изысканий. Объектами такой оптимизации являются подготовка файлов «сырых» измерений в необходимом формате, предобработка и оформление данных геодезических измерений, и подготовка предварительного цифрового топоплана.

Предобработка измерений

После полевой работы геодезистов «сырой» файл с результатами полевых измерений при производстве топографической съёмки должен быть передан в определенном формате данных - *.РСО, который соответствует одного формату ИЗ первых электронных тахеометров Geodimeter. необычного Необходимость именно использования ЭТОГО обусловлена его применением в других внутренних программных продуктах компании на последующих этапах работы.

Первая проблема заключается в том, что с данным форматом данных сейчас работают лишь тахеометры компании «Trimble», которая в 2000 году поглотила компанию «Spectra Precision», выпускавшую возможно лучшие для своего времени тахеометры серии «Geodimeter» [1].

Вторая проблема заключается в необходимости вручную и в письменном виде оформлять результаты полевых измерений, выполняя при этом целый ряд расчётов по данным, которые можно получить либо с экрана тахеометра, либо из «сырого» файла измерений. К таким предварительным расчётам при проложении тахеометрического хода относятся: вычисление угла засечки на стенные репера, вычисление дирекционных углов всех сторон хода, определение общей длины хода или его части, расчёт невязок при ориентировании и выполнении контрольных измерений (незамыкания)

на станции в плане и по высоте, определение общей линейной невязки и невязки по высоте, а также допустимых невязок. Кроме того, необходимо вычертить схему хода с ориентацией её на север [2].

Все эти действия, производимые вручную, отнимают огромное количество времени геодезиста и требуют предельной внимательности. Для расширения списка приборов, способных работать с форматом данных *.РСО, а также оптимизации процесса предобработки измерений и оформления полевого материала была разработана уникальная, не имеющая аналогов программа-конвертер «G-Converter», позволяющая сократить время подготовки материала в 3-5 раза.

Конвертирование данных в формат *.РСО

Исходными форматами данных для преобразования в формат *.PCO послужили SDR-файлы с тахеометров «Sokkia CX-105» и «Sokkia FX-105», а также данные с GNSS-приёмников «PrinCe i90» и «PrinCe i50» в формате ТХТ.

Основной задачей при работе с форматами данных было построение логического представления записи измерений в тахеометрическом ходе в исходных SDR-файлах тахеометров.

В соответствии с требованиями «Руководства по производству топографических съемок масштаба 1:500 и 1:20 электронными тахеометрами», разработанного ГБУ «Мосгоргеотрест» для работы в г. Москве [3], тахеометрический ход должен опираться минимум на три исходных пункта ГГС (обычно стенные репера). Выполняется координатная привязка. До и после съёмки ситуации обязательно выполняются контрольные измерения на точку ориентирования (пункт ГГС или задняя точка хода). Ход замыкается на один пункт ГГС [4].

Из-за представленных выше условий проложения ходов в исходных файлах возникает сложная конструкция записи результатов выполнения обратной линейно-угловой засечки, которую необходимо отразить в формате *.PCO. Также в данный формат необходимо перенести все линейно-угловые измерения и предварительные координаты пунктов тахеометрического хода и пикетов.

Описание форматов данных

Пример и описание файла формата *. PCO представлены в приложении 4 выше помятого руководства по топографической съемке. Такой файл представляет собой список меток (кодов) с соответствующими им данными (табл. 1). Его пример представлен на рис. 1.

Таблица 1- Список меток формата *.PCO

Код	Описание
50	Имя проекта
51	Дата
52	Время
53	Имя исполнителя
0	Имя прибора
2	Имя станции
3	Высота станции
4	Код пункта
5	Имя пикета
6	Высота вешки
7	Горизонтальный угол
8	Вертикальный угол
9	Наклонное расстояние
37	Координата Север
38	Координата Восток
39	Высота

50=PROSPECT MIRA 0=Instrument: CX-105 51=24-JUN-20 52=10:29 53=POCHATKOV 2=ld1. 3=1.616 4=872 37=22422.620 38=8812.189 39=146,267 5=41419. 4=872 6=0.015 7=73.36300 8=91.42190 9=61.867 37=22440.071 38=8871.515 39=145.911

Рисунок 1-Пример структуры файла формата *. PCO

Форматы SDR-файлов тахеометров «Sokkia» представляет собой сложную конструкцию для чтения и разбора (рис.2), а также заметно отличаются друг от друга из-за разности в поколениях приборов. Тахеометр «Sokkia CX-105» способен создавать файл с записанными в нём измеренными углами и наклонными расстояниями, а также координатами пунктов, необходимыми для записи в файл *.PCO. Тахеометр «Sokkia FX-105» способен предоставить все необходимые данные лишь в двух отдельных SDR-файлах: один – с измерениями, второй – с координатами.

00NMSDR33 V04	-04.02 24-JU	N-20 1	0:29 111111	L			
10NMPROSPECT	MIRA 12111	1					
06NM1.0000000							
01NM:CX-105 V	02-57 GS0460CX	-105 V	02-57 GS6	46031			0.000
08KI	33387.22485.069		9267.546		141.523		
08KI	41419.22440.067		8871.508		145.901		
08KI	75325.22384.372		8809.535		146.276		
02TP	ld1.22422.620		8812.189		146.267	1.616	
03NM0.015							
09F1	ld1.	41419	.61.867		91.70528	73.60861	872
08TP	41419.22440.071		8871.515		145.911	872	
03NM1.700							
09F1	ld1.	1d2	.111.427		90.22556	85.60194	96
08TP	ld2.22431.165		8923.287		145.629	96	
09F1	ld1.	75325	.38.351		89.70111	183.96250	872
08TP	75325.22384.362		8809.538		146.267	872	
03NM0.015							
09F1	ld1.	41419	.61.867		91.70417	73.60889	872
08TP	41419.22440.071		8871.515		145.913	872	
02TP	ld2.22431.165		8923.287		145.629	1.674	872
08KI	ld1.22422.620		8812.189		146.267		
07TP	ld2.	ld1	.265.60194		265.60194		
09F1	ld2.	ld1			89.71833	265.60194	872
03NM1.700							
09F1	ld2.	ld1	.111.421		89.71778	265.60139	96
08TP	ld1.22422.620		8812.195		146.153	96	

Рисунок 2 - Пример SDR-файла тахеометра «Sokkia CX-105»

Первые четыре символа в каждой строке представляют собой код, которому соответствуют определённые данные съемки. Данные в строках представляют собой таблицу, разделяющую строку по 16 символов. Незанятое пространство заполнено пробелами.

Почти из любого современного GNSS-оборудования можно получить наиболее удобный настраиваемый формат ТХТ для конвертации данных, в исходные данные записывается только следующая информация: номера пикетов, их коды, координаты и точность их определения, высота антенны. Данный формат представляет собой список пикетов с вышеуказанными параметрами (рис. 3), разделенными пробелами или табуляцией.

```
2.000
                13836.2689
                                 -1252.7415
99
        3.000
                13836,2832
                                 -1252.7422
                                                 156.0178
                                                                  0.012
40
        3.000
                                 -1230.897
                13749.8377
                                                 156.4565
                                                                  0.011
                                                                          0.02
        3.000
                13749.6098
                                 -1229.7698
                                                 156.3556
40
                                                                  0.011
                                                                          0.02
        3.000
                13737.0134
                                 -1235.9482
                                                 155.9316
                                                                  0.011
                                                                          0.018
                13736.9102
                                 -1232.9849
        3.000
                                                 156.1057
                                                                  0.011
        3.000
                13772.8854
                                 -1309.6912
                                                 155.0463
                                                                  0.011
                                                                          0.017
40
40
        3.000
                13769.6522
                                 -1310.699
                                                 155.0104
                                                                  0.01
                                                                          0.014
                                -1301.0139
        3.000
                13781.3128
                                                 155.5154
60
                                                                  0.011
                                                                          0.02
        3.000
                13781.302
                                 -1290.1621
                                                                  0.011
                                                 155.5397
                                                                          0.017
```

Рисунок 3- Пример ТХТ-формата из GNSS-оборудования

Функционал разработанной программы-конвертера В главном окне программы находятся поля для загрузки исходных файлов (рис. 4).

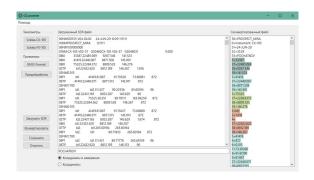


Рисунок 4 - Главное окно программы-конвертера

Исходные данные могут быть загружены через файловый диалог системы. Программа сохраняет последний использованный путь к файлам для сокращения количества переходов по папкам. Так же поддерживается функция «Drag-and-drop», что позволяет просто перетащить необходимые файлы мышкой из проводника для загрузки в программу. В полях исходные данные могут быть отредактированы.

Сконвертированные данные также отображаются в отдельном поле и могут быть отредактированы. Информация о каждой точке тахеометрического хода выделяется своим цветом для упрощения визуальной идентификации и контроля полученной информации.

Также в программе предусмотрена возможность визуального отображения и предобработки информации о тахеометрическом ходе из исходного файла. Построение схемы хода происходит в отдельном диалоговом окне (рис. 5) по полученным сконвертированным данным в формате *. PCO. Все пункты хода интерактивны. Левым двойным кликом мыши данные пункта заносятся в таблицу, в которой производится расчет

всех необходимых параметров для оформления сопутствующей

документации.

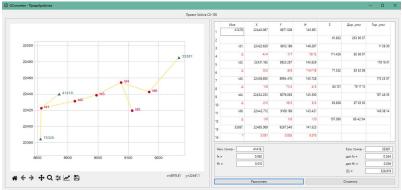


Рисунок 5 - Диалоговое окно визуализации и обработки данных

Подготовка предварительного цифрового топоплана.

Всем известная технология полевого кодирования позволяет получать файл с частично отрисованной в координатах ситуацией в процессе производства полевых работ. Но обычные системы кодирования не позволяют отказаться от ведения классического бумажного абриса [5].

В целях получения от технологии полевого кодирования максимальной эффективности был разработан собственный алгоритм, реализующий систему кодирования, основанную на системе, используемой в ГБУ Мосгоргеотрест, а также разработано соответствующее программное обеспечение, способное на основе данной системы кодирования выполнять анализ на выявление грубых ошибок при проведении топографических съемок ГНСС-оборудованием.

На данный момент разработанное ПО, реализующее данную систему кодирования, представлено в виде бота в мессенджере «Telegram» и в виде полноценной десктопной версии, работающей с САПР AutoCad.

Версии программного обеспечения «ABRIS»

Десктопная версия ПО подключается напрямую к AutoCad и может использовать блоки и типы линий из заранее заготовленного шаблона.

По умолчанию программное обеспечение использует условные знаки для топографических планов масштаба 1:500 утвержденные ГУГК при Совете Министров СССР 25 ноября 1986 г. [6].

Полевая версия ПО реализуется на базе всемирно известного мессенджера «Telegram» в виде telegram-бота (рис. 6), что позволяет запускать его на современных контроллерах ГНСС-оборудования под управлением ОС «Android» и обычных смартфонах. Стоит отметить, что в современных реалиях приложением «Telegram» пользуется почти каждый гражданин России, имеющий смартфон, поэтому использование данного ПО абсолютно не требует специальной подготовки.

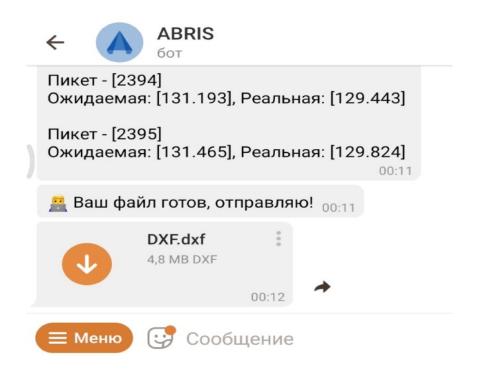


Рисунок 6 - Интерфейс полевой версии программного обеспечения «ABRIS»

Уникальной особенностью полевой версии является то, что она позволяет работать нескольким пользователям (геодезистам) в одном «облачном» рабочем пространстве, тем самым давая возможность одновременно загружать данные с разных ГНСС-контроллеров и в любое время суток получать общую DXF-подложку прямо в полевых условиях.

Данная особенность позволяет при работе на одном объекте нескольких бригад обмениваться им информацией в виде предварительных цифровых топопланов, а также исключать случаи наложения смежных районов работ.

Единственным недостатком данной реализации ПО является необходимость наличия интернет-соединения, но данная проблема частично решается созданием оффлайн-приложения для смартфона.

Система кодирования

Основным преимуществом используемой системы кодирования является ее гибкость. В кодировании линий нет понятия начала или конца линии. Вместо этого используется специальная структура, означающая присоединение текущего пикета к предыдущему или любому другому, что позволяет присоединять линии к любым пикетам, даже относящимся к точечным объектам. Тогда как в классических системах кодирования пикеты четко подразделяют по типу на точечные и линейные и не могут иметь никаких связей [5].

Атрибутами в используемой системе являются числовые значения, что позволяется вводить код, используя лишь числовую клавиатуру контроллера. Пример разработанного классификатора системы приведен в таблице

Таблица 2- Пример классификатора системы кодирования

Здания и сооружения								
Код	Описание	Ко	Описание					
		Д						
10	Жилое (Фундамент)	19	Нежилое (Подземное)					
11	Жилое (Каменное)	110	Сооружение строящееся					
12	Жилое (Деревянное)	191	Нежилое (Шахта)					
13	Жилое (Терраса)	200	Подъезд (Крыльца)					
14	Жилое (Смешанное)	201	Закрытый вход					
192	Нежилое (Специализированное)	210	Площадка					
15	Нежилое (Каменное)	211	Отмостка					
16	Нежилое (Металлическое)	220	Лестница					
17	Нежилое (Деревянное)	270	Навес					

Технология полевого кодирования — дополнительный источник информации

Технологию полевого кодирования можно использовать не только как инструмент для автоматизированного создания предварительных цифровых топопланов, но и как дополнительный источник информации для анализа выполненной топографической съемки на грубые ошибки.

К таким ошибкам при производстве топографических съемок с использованием ГНСС-оборудования можно отнести ошибки в плановом и высотном положении пикетов, вызванные ошибочными фиксированными решениями («ложными фиксами»), дающими неверные координаты, и невнимательностью исполнителя при указании высоты вехи.

При помощи анализа высот и дополнительной информации о пикетах из полевого кодирования, разработанное ПО позволяет выявлять на ранней стадии (еще в поле) пикеты, в положении которых вероятна грубая ошибка. Информирование пользователя о возможных ошибках происходит как текстовым сообщением в мессенджере, так и специальными маркерами на полученном цифровом топоплане (рис. 7,8).

130.09 9.04 130.03 128.68 129.82

Рисунок 7- Специальный маркер на цифровом предварительном топоплане

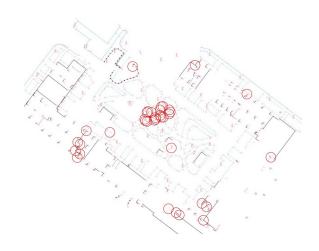


Рисунок 8- Фрагмент результата автоматической отрисовки с информационными маркерами

В заключении необходимо отметить, что разработанная программа-конвертер позволяет расширить список приборов, используемых для производства топографической съемки для конкретной организации, а также значительно ускорить производство за счет внедрения в работу современного ГНСС-оборудования.

Возможности программы по визуализации тахеометрических ходов и расчетам всех необходимых параметров для оформления документации позволили исключить значительную часть ошибок при выполнении ручных расчетов, а также упростить проверку соответствия параметров съемок всем требованиям.

На данный момент разработанное ПО уже более года крайне эффективно используется на производстве. Применение данной системы кодирования вместе с ПО позволяет во многих случаях сократить количество геодезистов в бригаде до одного человека и тем самым, увеличить вдвое число одновременно работающих бригад, что крайне выгодно с экономической точки зрения. Такое повышение эффективности становится возможным при работе с современным ГНСС-оборудованием на объектах с относительно благоприятными условиями радиовидимости.

Подробнее ознакомиться с разработанным ПО и предлагаемой системой кодирования можно на официальной странице ресурса: https://geodesist.ru/resources/abris-bot.323/

Список литературы

1. Обиняков В.Б. Из истории геодезических измерений. Geodimeter — первый электронный тахеометр, 2018 [Электронный ресурс] [Текст] / Научно-технический журнал по геодезии, картографии и навигации "Геопрофи". — Режим доступа: http://www.geoprofi.ru/technology/iz-istorii-geodezicheskikh-izmerenij-geodimet-e-r-pervyhj-ehlektronnyhj-takheometr (дата обращения: 25.03.2021).

- 2. Руководство по топографической съемке масштаба 1:500, [Текст] / Москва: ГБУ «МОСГОРГЕОТРЕСТ», 2001.
- 3. Руководство по производству топографических съемок масштаба 1:500 и 1:20 электронными тахеометрами [Текст] / Москва: ГБУ «МОСГОРГЕОТРЕСТ», 2001.
- 4. Юнусов А.Г., Беликов А.Б., Баранов В.Н., Каширкин Ю.Ю. Геодезия [Текст]: Учебник для вузов. М.: Академический Проект; Гаудеамус, 2011. 409 с. (Gaudeamus: библиотека геодезиста и картографа).
- 5. ПО Кредо ДАТ v5.3 Обработка полевых инженерно-геодезических данных. Руководство пользователя. [Электронный ресурс] Программные продукты и технологии Кредо, 2021 —Режим доступа: https://credodialogue.ru/media/downloads/Documentation/ДАТ%205.3.%20Руководство %20пользователя.pdf (дата обращения: 04.05.2022).
- 6. Условные знаки для топографических планов масштабов 1:5000 1:2000 1:1000 1:500 [Текст]: Утверждены ГУГК при Совете Министров СССР 25 ноября 1986 г. Москва «Недра», 1989.